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Concept of Formation of band in Materials 

Formation of band in materials involved through chemical bonding of electrons. We take an 

example of Si atoms, which is most abundant element in the earth crust. These materials are 

being used in various applications in Electronics, Medical science, cement industry etc. [1-2]. 

The Si atom has 14 electrons, which distribute themselves in the various atomic energy levels 

(Fig. 3.1). The inner shells, n=1and n=2 are full and therefore “closed”. Since these shells are 

near the nucleus, when Si atoms come together to form the solid, they are not much affected and 

they stay around the parent Si atoms. Therefore, be excluded from further discussion. The 3s and 



3p subshells are further away from the nucleus. When two Si atoms approach, these electrons 

strongly interact with each other. Hence, in studying the formation of bands in the Si solid, we 

will only consider the 3s and 3p levels. 

 

 

 

Why Si actually bonds with four neighbors, since the 3s orbital is full and there are only two 

electrons in the 3p orbitals. The full 3s orbital should not overlap a neighbor and  involved in 

bonding. Since only two 3p orbitals are half full, bonds should be formed with two neighboring 

Si atoms. In reality, the 3s and 3p energy levels are quite close and when five Si atoms approach 

each other, the interaction results in the four orbital is   

mixing together to form four new hybrid orbitals, which are directed in tetrahedral directions; 

that is, each one is aimed as far away from the others as possible, (Fig. 3.2).  
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We call this process hybridization, since one s orbital and three p orbitals are mixed. (The 

superscript 3 on p refers to the number of p orbitals used in the hybridization).The four   hybrid 

orbitals, , have one electron, each so they are half occupied. This means that four Si atoms can 

have their orbitals.   Overlap to form bonds with one Si atom, which is what actually happens; 

thus, one Si atom, bonds with four other Si atoms in tetrahedral directions. In the same way, one 

Si atom bonds with four H atoms to form   - an important gas known as silane which is 

widely used in Materials technology to fabricate Si based devices. In  , four hybridized 

orbitals of the Si atom overlap with the 1s orbitals of four H atoms. In exactly the same way, one 

carbon atom bonds with four H atoms to form methane, .There are two ways in which the 

hybrid orbital can overlap with that of the neighboring Si atom to form two molecular 

orbitals. They can add in phase (both positive and both negative) or out of phase (one positive 

and the other negative) to produce a bonding or an antibonding molecular orbital   and , 

respectively, with energies and . Each bond thus corresponds to two paired 
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electrons in a bonding molecular orbital. In the solid, there are Si atoms, 

and there are nearly as many such   bonds. The interactions between the  orbital (i.e. the  

bonds) lead to the splitting of the   energy levels to N levels, thereby forming an energy 

band labelled the valence band (VB) by virtue of the valence electrons it contains. Since the 

energy level   is full, so is the valence band. Fig. (3.3) illustrates the formation of the VB from

 .

 

 

In the solid, the interactions between the N number of  orbitals result in the splitting of the 

energy level   to N levels and the formation of an energy band that is completely empty and 

separated from the full valence band by a define energy gap  . In the gap region, there are no 

states; therefore, the electron cannot have energy with a value within  . The energy band 
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formed from   orbitals is a conduction band (CB)[Fig. 3.3]. The electronic states in the VB (and 

also in the CB) extend throughout the whole solid, because they result from orbitals 

interfering and overlapping each other. orbitals can overlap in N different ways to 

produce N distinct wavefunctions that extend throughout the solid. We cannot relate a 

particular electron to a particular bond or site because the wavefunctions   corresponding to 

the VB energies are not concentrated at a single location. The electrical properties of solid 

materials  are based on the fact that in solids, such as semicondcutors and insulators there 

are certain bands of allowed energies for the electrons, and these bands are separated by 

energy gaps, that is, band gaps. At temperatures above absolute zero, the atoms in a solid 

vibrate due to their thermal energy. Some of the atoms can acquire a sufficiently high energy 

from thermal fluctuation to strain and rupture their bonds. Physically, there is a possibility that 

the atomic vibrations will impart sufficient energy to the electron for it to surmount the bonding 

energy and leave the bond. The electron then must enter the higher energy state. In the case of Si, 

this means entering a state in the CB (Fig. 3.4).

 

If there is an applied electric field in the direction, then the excited electron will be acted 

on by a force and it will try to move in the   direction. For it to do so, there must be 

empty higher energy levels, so that as the electron accelerates and gains energy, it moves up the 

band. When an electron collides with a lattice vibration, it loses the energy acquired from the 

field and drops down within the CB. Again, it would be emphasized that states in any energy 
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band are extended; that is, the electron is not localized to any one atom. Note that the thermal 

generation of an electron from the VB to the CB leaves behind a VB state with a missing 

electron. This unoccupied electron state has an apparent positive charge, because the crystal 

region was neutral prior to the removal of the electron. The VB state with the missing electron 

is called a hole and is denoted  . The hole can “move” in the direction of the field by 

exchanging places with a neighbouring valence electron and hence it contributes to 

conduction. 

Energy (E)  Wave Vector (K) Diagram  

When the electron is within a potential well of size l, its energy is quantized and given by 

 

where the wave vector  is essentially a quantum number determined by 

 

Where  , The energy increases parabolically with the wave vector  . We also know 

that the electron momentum is given by  . This description can be used to represent the 

behavior of electrons in a metal within which their average potential energy can be taken to be 

roughly zero. In other words, we take  within the metal crystal and   to be large [e.g. ]

 outside so that the electron is contained within the metal. The potential energy of the 

electron depends on its location within the crystal and is periodic due to the regular arrangement 

of atoms. To find the energy of the electron in a crystal, we need to solve Schrodinger equation 

for a periodic potential energy function in three dimensions. We first consider the hypothetical 

one-dimensional crystal (Fig. 3.5).  

The electron potential energy functions for each atom add to give an overall potential energy  

function  , which is clearly periodic in x with the periodicity of the crystal a. Thus, 

                                   

  

                   and so on. We want to solve the Schrodinger equation 

                                                                     (3.1) 
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subject to the condition that the potential energy  is periodic in a, that is 

                                                                                 (3.2) 

 

 

The solution of equation (3.1) will give the electron wave-function in the crystal and hence the 

electron energy. Since is periodic, we expect the solution   to be periodic. The solutions to 

equation (3.1) are called the Bloch wavefunctions and are of the for 

                                                                            (3.3) 

when is a periodic function that depends on and has the same periodicity aas . 

The term  represents a travelling wave. We have to multiply this by , 

where E is the energy, to get the overall wavefunction . Thus the electron wavefunction in 

the crystal is a travelling wave that is modulated by  . 
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There are many such Bloch wavefunction solutions to the one-dimensional S.E, each identified 

with a particular k value, (say) , which acts as a kind of quantum number. Each solution 

corresponds to a particular   and represents a state with an energy. The dependence of the 

energy   on the wavevector k is called the  diagram. Fig. (3.6) shows a typical   

diagram for the hypothetical one-dimensional solid for k values in the range to

 for the Bloch electron is the momentum involved in its interaction with external fields. The 

rate of change of   is the externally applied force  on the electron such that due to an electric field  

Thus, for the electron within the crystal, 

 

 

 

and consequently we call  the crystal momentum of the electron.The   diagram is an 

energy versus crystal momentum plot. The states   in the lower  curve constitute the 

wavefunctions for the valence electrons and thus correponds to the states in the VB. Those in the 

upper  curve, on the other hand, correspond to the states in the conduction band (CB), since they 
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have higher energies. All the valence electrons at the absolute zero of temperature therefore fill 

the states, particular   values, in the lower   diagram. It should we emphasized that an

  curve consists of many discrete points, each corresponding to a possible state, 

wavefunction  , that is allowed to exist in the crystal. The points are so close that we draw 

the   relationship as a continuous curve. It is clear from the diagram that there is a 

range of energies, from   to  , for which there are no solutions to the S.E. and hence there 

are no with energies in to . The behavior is not a simple parabolic 

relationship except near the bottom of the CB and the top of the VB. 

 Direct Bandgap Semiconductor 

Above absolute zero of temperature, due to thermal excitation, however, some of the electrons 

from the top of the valence band will be excited to the bottom of the conduction band. According 

to the   diagram (Fig. 3.6), when an electron and hole recombine, the electron simply drops from 

the bottom of the CB to the top of the VB without any change in its k value, so this transition is 

quite acceptable is terms of momentum conservation. The momentum of the emitted photon is 

negligible compared with the momentum of the electron. The diagram in Fig. 3.6 is 

therefore for a direct band gap semiconductor. The simple diagram sketched in Fig. 3.6 

is for the hypothetical one-dimensional crystal in which each atom simply bonds with two 

neighbors. In real crystals, we have a three-dimensional arrangement of atoms with   

showing periodicity in more than one direction. The   curves are then not as simple as that 

in Fig. 3.6 and often show unusual features. The   diagram for GaAs (Fig. 3.7a) has main 

features that are quite similar to that sketched in (Fig. 3.6). GaAs is therefore a direct bandgap 

semiconductor in which electron-hole pairs can combine directly and emit a photon. It is quite 

apparent that the light emitting devices use direct bandgap semiconductors to make use of direct 
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recombination.

 

 

Indirect Bandgap Semiconductor 

In the case of Si, the diamond crystal structure leads to an   diagram that has the essential 

features depicted in Fig. 3.7b. We notice that the minimum of the CB is not directly over the 

maximum of the VB. An electron at the bottom of the CB therefore cannot recombine directly 

with a hole at the top of the VB because, for the electron to fall down to the top of the VB its 

momentum must change from   to  , which is not allowed by the law of conservation of 

momentum. Thus direct electron-hole recombination does not take place in Si and Ge. The 

recombination process in these elemental semiconductors occurs via a recombination centre at an 

energy level  . The electron is captured by the defect at  ,from where it can fall down into 

the top of the VB. The indirect recombination process is illustrated in Fig. 3.7c. The energy of 

the electron is lost by the emission of phonons, that is, lattice vibration. The  diagram in 

Fig. 3.7b for Si is an example of an indirect bandgap semiconductor. 
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In some indirect bandgap semiconductor (GaP), the recombination of the electron with a hole at 

certain recombination centers results in photon emission. The   diagram is similar to that 

shown in Fig. 3.7c except that the recombination centers at are generated by the purposeful 

addition of nitrogen impurities to GaP. The electron transition from to involve photon 

emission. 

 

 

Band gap in Li-Mg-Ferrite Nanomaterials using Tauc plot 
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Fig.1.8.  Tauc plot of Mg0.5+xLi1−2xFe2O4different concentration having 0 ≤ x ≤ 0.35. 

 

                              Band gap order- (2.5 eV), (1.98 eV) and (2.41eV)  

Ref- Nishant Kr and Rakesh Kr Singh et al, J. Materials : Materials in Electronics- in press 
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Motion of an   Electron in crystal and its Effective Mass 

The response of a conduction band electron to an applied field can be understood by examining 

the diagram. We consider one-dimensional crystal. The electron is wandering around the 

crystal quite randomly due to scattering from lattice vibrations. Thus the electron moves with a 

certain k value in the direction, say (Fig. 3.8a). When it is scattered by a lattice vibration, 

its k value changes to (Fig. 3.8a). This process of k changing randomly from one scattering to 

another scattering process continues all the time, so over a long time the average value of k is 

zero; that is, average  is the same as average . 

 

When an electric field is applied in the direction the electron gains momentum in the

direction from  the force   of the field. With time, while the electron is not scattered, it 

moves up in the   diagram from   to to and so on until a lattice vibration 
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randomly scatters the electron to   (Fig. 3.8b). Over a long time, the average of all   is no 

longer equal to the average of all  and there is a net momentum in the   direction, which is 

tantamount to a drift in the same direction. 

Effective Mass of an Electron 

The inertial mass of a particle is defined by mass = force/acceleration. We will evaluate the 

velocity and acceleration of the electron in the CB in response to an electric field   along   

that imposes an external force   in the   direction (Fig. 3.8b).Since we are treating 

the electron as a wave, we have to evaluate the group velocity, which, by definition, is 

 

The time dependence of the wave function is   where the energy 

 

  is the an angular frequency associated with the wave motion of the electron. Both E and  

depend on k. Thus the group velocity is 

                                                                                                                   (3.4) 

Thus the group velocity is determined by the gradient of the   curve. In the presence of an 

electric field, the electron experiences a force   from which it gains energy and 

moves up in the   diagram until, later on, it collides with a lattice vibration (Fig. 3.8b). 

During a small time interval between collisions, the electron moves a distance and hence 

gains energy  , which is 

                                                                                                     (3.5)  

                                                                                            (3.6) 

The acceleration a is defined as . 
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                                                                                ( 3.7) 

From equation (3.7), we can substitute for   in equation (3.6) to obtain 

                                                                                      (3.8) 

 

We know that where m is the electron mass in vacuum. Therefore the effective mass 

of the electron in the crystal is 

                                                                                    (3.9) 

The effective mass depends on the   relationship, which in turn depends on the crystal 

symmetry and the nature of bonding between the atoms. The value is different for electrons in 

the CB and for those in the VB, and moreover, it depends on the energy of the electron since it is 

related to the curvature of the behavior  . The effective mass is a quantum 

mechanical quantity in as much as the   behavior is a direct consequence of the application of the 

S.E. to the electron in the crystal. When the  curve is a downward concave as at the top 

of a band (Fig. 3.6), the effective mass of an electron at these energies in a band is negative. 

When the electron moves up on the   curve by gaining energy from the field, it actually 

decelerates, that is, moves very slowly. Its acceleration is therefore in the opposite direction to an 

electron at the bottom of the band 
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 Model Questions 

1. What is Effective mass of an electron? Differentiate the direct and indirect gap 

semiconductors. 

2.        Explain, motion of an electron in nanocrystaline solid materials?        
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