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Concept of Formation of band in Materials

Formation of band in materials involved through chemical bonding of electrons. We take an
example of Si atoms, which is most abundant element in the earth crust. These materials are
being used in various applications in Electronics, Medical science, cement industry etc. [1-2].
The Si atom has 14 electrons, which distribute themselves in the various atomic energy levels
(Fig. 3.1). The inner shells, n=1and n=2 are full and therefore “closed”. Since these shells are
near the nucleus, when Si atoms come together to form the solid, they are not much affected and

they stay around the parent Si atoms. Therefore, be excluded from further discussion. The 3s and



3p subshells are further away from the nucleus. When two Si atoms approach, these electrons
strongly interact with each other. Hence, in studying the formation of bands in the Si solid, we

will only consider the 3s and 3p levels.
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Figure 3.1 The electronic structure of Si.

Why Si actually bonds with four neighbors, since the 3s orbital is full and there are only two
electrons in the 3p orbitals. The full 3s orbital should not overlap a neighbor and involved in
bonding. Since only two 3p orbitals are half full, bonds should be formed with two neighboring

Si atoms. In reality, the 3s and 3p energy levels are quite close and when five Si atoms approach

each other, the interaction results in the four orbital is W(SS)’W(SPX)’W(Spy)’W(sz)

mixing together to form four new hybrid orbitals, which are directed in tetrahedral directions;

that is, each one is aimed as far away from the others as possible, (Fig. 3.2).



(a) Isolated Si (b) Si preparing to bond

Figure 3.2

{a) Si is in Group IV in the Periodic Table. An isolated Si atom has two electrons
in the 3s and two electrons in the 3p orbitals.

(b) When Si is about to bond, the one 3s orbital and the three 3p orbitals
become perturbed and mixed to form four hybridized orbitals, Yy, colled sp®
orbitals, which are directed toward the corners of a tetrahedron. The ¥y orbital
has a large major lobe and a small back lobe. Each ¥y orbital takes one of the
four valence electrons.

We call this process Sp3 hybridization, since one s orbital and three p orbitals are mixed. (The
superscript 3 on p refers to the number of p orbitals used in the hybridization).The four hybrid
orbitals, , have one electron, each so they are half occupied. This means that four Si atoms can
have their orbitals. Overlap to form bonds with one Si atom, which is what actually happens;

thus, one Si atom, bonds with four other Si atoms in tetrahedral directions. In the same way, one

Si atom bonds with four H atoms to form StHy an important gas known as silane which is

widely used in Materials technology to fabricate Si based devices. In Si Hy , four hybridized

orbitals of the Si atom overlap with the 1s orbitals of four H atoms. In exactly the same way, one

carbon atom bonds with four H atoms to form methane, CH4 There are two ways in which the

hybrid orbital Vhyb can overlap with that of the neighboring Si atom to form two molecular

orbitals. They can add in phase (both positive and both negative) or out of phase (one positive
and the other negative) to produce a bonding or an antibonding molecular orbital ¥B and VA,

respectively, with energies EBand EA. Each Si_Sibond thus corresponds to two paired



N (~5x 1022 cm_?’)

electrons in a bonding molecular orbital. In the solid, there are Si atoms,

and there are nearly as many such bonds. The interactions between the orbital (i.e. the

bonds) lead to the splitting of the Ep energy levels to N levels, thereby forming an energy
band labelled the valence band (VB) by virtue of the valence electrons it contains. Since the

energy level is full, so is the valence band. Fig. (3.3) illustrates the formation of the VB from
Ep
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Figure 3.3 (o) Formation of energy bands in the Si crystal first involves
hybridization of 3s and 3p orbitals to four identical Yy orbitals, which are
at 109.5° to each other gs shown in (b). {c) ¥y orbitals on two neighboring
Si atoms can overlap to form g or yra. The first is bonding orbital (full) and
the second is an antibonding orbital {empty). In the crystal, 5 overlap to give

the valence band (full) and ¥4 overlap to give the conduction band (empty) (d). Si crystal

In the solid, the interactions between the N number of WA orbitals result in the splitting of the

energy level EA o N levels and the formation of an energy band that is completely empty and
i E .
separated from the full valence band by a define energy gap = 9 . In the gap region, there are no

states; therefore, the electron cannot have energy with a value within — 9 . The energy band



formed from orbitals is a conduction band (CB)[Fig. 3.3]. The electronic states in the VB (and
also in the CB) extend throughout the whole solid, because they result from N V¥ Boritals
interfering and overlapping each other. N VBorbitals can overlap in N different ways to
produce N distinct wavefunctions Wub that extend throughout the solid. We cannot relate a

particular electron to a particular bond or site because the wavefunctions Yob corresponding to
the VB energies are not concentrated at a single location. The electrical properties of solid
materials are based on the fact that in solids, such as semicondcutors and insulators there
are certain bands of allowed energies for the electrons, and these bands are separated by
energy gaps, that is, band gaps. At temperatures above absolute zero, the atoms in a solid
vibrate due to their thermal energy. Some of the atoms can acquire a sufficiently high energy
from thermal fluctuation to strain and rupture their bonds. Physically, there is a possibility that
the atomic vibrations will impart sufficient energy to the electron for it to surmount the bonding
energy and leave the bond. The electron then must enter the higher energy state. In the case of Si,

this means entering a state in the CB (Fig. 3.4).

Figure 3.4 Energy band diagram of
a semiconductor.

CB is the conduction band and VB is
the valence band. At 0 K, the VB is full
with all the valence electrons.

i

CB

Electron energy

Thermal
excitation 4

If there is an applied electric field Ex in the T X direction, then the excited electron will be acted

eE and it will try to move in the —X direction. For it to do so, there must be

on by a force
empty higher energy levels, so that as the electron accelerates and gains energy, it moves up the
band. When an electron collides with a lattice vibration, it loses the energy acquired from the

field and drops down within the CB. Again, it would be emphasized that states in any energy



band are extended; that is, the electron is not localized to any one atom. Note that the thermal
generation of an electron from the VB to the CB leaves behind a VB state with a missing
electron. This unoccupied electron state has an apparent positive charge, because the crystal
region was neutral prior to the removal of the electron. The VB state with the missing electron

is called a hole and is denoted h* . The hole can “move” in the direction of the field by
exchanging places with a neighbouring valence electron and hence it contributes to
conduction.

Energy (E) Wave Vector (K) Diagram

When the electron is within a potential well of size I, its energy is quantized and given by
E,, = (hk,)* /2m
where the wave vector is essentially a quantum number determined by
k,=nr/l

Where =12, 3 , The energy increases parabolically with the wave vectorkn . We also know

hk

that the electron momentum is given by "7 . This description can be used to represent the

behavior of electrons in a metal within which their average potential energy can be taken to be

roughly zero. In other words, we take within the metal crystal and V%) {0 pe large [e.g. ]

Vix)="Vo outside so that the electron is contained within the metal. The potential energy of the

electron depends on its location within the crystal and is periodic due to the regular arrangement
of atoms. To find the energy of the electron in a crystal, we need to solve Schrodinger equation
for a periodic potential energy function in three dimensions. We first consider the hypothetical
one-dimensional crystal (Fig. 3.5).

The electron potential energy functions for each atom add to give an overall potential energy

function Vi(x) , Which is clearly periodic in x with the periodicity of the crystal a. Thus,
Vix)=V(x+a)=V(x+2a)=...

and so on. We want to solve the Schrodinger equation

d’y  2m
dx®> n2 [E-V(x)]y=0 (3.1)



subject to the condition that the potential energy is periodic in a, that is

Vix)=V(x+ma)m=1,2,3, ... 3.2)
PE(r)
PE of the electron around an isolated
r atom.
e @ -.éf'ﬂ}' "FJ-."&';QT@‘ e® "w;'?@_' o When N atoms are arranged to form the
R U A crysial then there is an overlop of individual
i - ¥ v s o electron PE functions.
Vix)
-— a — a .
O~ @& @& & - ®---- @D e PE of the electron, V{x), inside the
\/\/\/\/\/‘\/’- crystal is periodic with a period a.
X

Figure 3.5 The electron potential energy (PE), V|x), inside the crystal is periodic with the same
periodicity a as that of the crystal. Far away outside the crystal, by choice, V= 0 {the electron is free
and PE = 0).

The solution of equation (3.1) will give the electron wave-function in the crystal and hence the

V(x)

electron energy. Since is periodic, we expect the solution to be periodic. The solutions to

equation (3.1) are called the Bloch wavefunctions and are of the for
Wi (%) = ug (x) exp (Jkx) (3.3)

when Yk (x) is a periodic function that depends on V(x)and has the same periodicity aas V(x).

€XP (JKX) represents a travelling wave. We have to multiply this by €XP (-JEt /1),

(x, t)

The term
where E is the energy, to get the overall wavefunction ¥ . Thus the electron wavefunction in

the crystal is a travelling wave that is modulated by U (%) .



There are many such Bloch wavefunction solutions to the one-dimensional S.E, each identified

with a particular k value, (say) , which acts as a kind of quantum number. Each ‘Vk(x)solution

corresponds to a particular Kn and represents a state with an energy. The dependence of the

energy Ej on the wavevector k is called the diagram. Fig. (3.6) shows a typical E -k

diagram for the hypothetical one-dimensional solid for k values in the range ~ ™/ @0 * T/ @

K for the Bloch electron is the momentum involved in its interaction with external fields. The
rate of change of is the externally applied force on the electron such that due to an electric field

Thus, for the electron within the crystal,

The E- diagram The energy band Figure 3.6 The -k diagrom of a
| diagram direct bandgap semiconductor such as
GoaAs.

The E-k curve consists of many
discrete points, each corresponding to
B a possible state, wavefunction y(x),
that is allowed to exist in the crystal.
The points are so close that we
normally draw the E-k relationship as
a conlinuous curve. In the energy
range E, o E, there are no points

[¥xd solutions].
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and consequently we call the crystal momentum of the electron.The E -k diagram is an

energy versus crystal momentum plot. The states Wi (x) in the lower curve constitute the
wavefunctions for the valence electrons and thus correponds to the states in the VB. Those in the

upper curve, on the other hand, correspond to the states in the conduction band (CB), since they



have higher energies. All the valence electrons at the absolute zero of temperature therefore fill

k

the states, particular ™7 values, in the lower E-k diagram. It should we emphasized that an

E-k curve consists of many discrete points, each corresponding to a possible state,

wavefunction Wi (x) , that is allowed to exist in the crystal. The points are so close that we draw

the & ~ k relationship as a continuous curve. It is clear from the E - kdiagram that there is a

E E

range of energies, from ~v to ~¢ , for which there are no solutions to the S.E. and hence there

are no "’k(x)with energies in Ey to Ec . The B - kbehavior is not a simple parabolic
relationship except near the bottom of the CB and the top of the VB.

Direct Bandgap Semiconductor

Above absolute zero of temperature, due to thermal excitation, however, some of the electrons
from the top of the valence band will be excited to the bottom of the conduction band. According
to the diagram (Fig. 3.6), when an electron and hole recombine, the electron simply drops from
the bottom of the CB to the top of the VB without any change in its k value, so this transition is

quite acceptable is terms of momentum conservation. The momentum of the emitted photon is
negligible compared with the momentum of the electron. The £ ~ kdiagram in Fig. 3.6 is

therefore for a direct band gap semiconductor. The simple E-k diagram sketched in Fig. 3.6
is for the hypothetical one-dimensional crystal in which each atom simply bonds with two

neighbors. In real crystals, we have a three-dimensional arrangement of atoms with Vix, y, 2)

E -k

showing periodicity in more than one direction. The curves are then not as simple as that

in Fig. 3.6 and often show unusual features. The E-k diagram for GaAs (Fig. 3.7a) has main
features that are quite similar to that sketched in (Fig. 3.6). GaAs is therefore a direct bandgap
semiconductor in which electron-hole pairs can combine directly and emit a photon. It is quite

apparent that the light emitting devices use direct bandgap semiconductors to make use of direct



recombination.
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Figure 3.7

(a) In GaAs the minimum of the CB is
directly above the maximum of the VB.
GaAs is therefore a direct bandgap
semiconductor.

(b) In Si, the minimum of the CB is
displaced from the maximum of the
VB and Si is an indirect bandgap
semiconductor.

{c) Recombination of an electron and _j <

a hole in Si involves a recombination
center. {c) Si with a recombination center

Indirect Bandgap Semiconductor

In the case of Si, the diamond crystal structure leads to an E-k diagram that has the essential
features depicted in Fig. 3.7b. We notice that the minimum of the CB is not directly over the
maximum of the VB. An electron at the bottom of the CB therefore cannot recombine directly

with a hole at the top of the VB because, for the electron to fall down to the top of the VB its

Ko , which is not allowed by the law of conservation of

momentum must change from Keb to
momentum. Thus direct electron-hole recombination does not take place in Si and Ge. The

recombination process in these elemental semiconductors occurs via a recombination centre at an

energy level Er  The electron is captured by the defect at E, ,from where it can fall down into

the top of the VVB. The indirect recombination process is illustrated in Fig. 3.7c. The energy of

the electron is lost by the emission of phonons, that is, lattice vibration. The E-k diagram in

Fig. 3.7b for Si is an example of an indirect bandgap semiconductor.



In some indirect bandgap semiconductor (GaP), the recombination of the electron with a hole at

certain recombination centers results in photon emission. The E-k diagram is similar to that
shown in Fig. 3.7c except that the recombination centers at Erare generated by the purposeful

addition of nitrogen impurities to GaP. The electron transition from Er g Ey involve photon

emission.

Band gap in Li-Mg-Ferrite Nanomaterials using Tauc plot
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Fig.1.8. Tauc plot of Mgos+xLii—2xFe20adifferent concentration having 0 < x < 0.35.

Band gap order- (2.5 eV), (1.98 eV) and (2.41eV)
Ref- Nishant Kr and Rakesh Kr Singh et al, J. Materials : Materials in Electronics- in press



Motion of an Electron in crystal and its Effective Mass

The response of a conduction band electron to an applied field can be understood by examining

the & — kdiagram. We consider one-dimensional crystal. The electron is wandering around the
crystal quite randomly due to scattering from lattice vibrations. Thus the electron moves with a

certain k value in the ™ X direction, say ky (Fig. 3.8a). When it is scattered by a lattice vibration,

its k value changes to ke (Fig. 3.8a). This process of k changing randomly from one scattering to

another scattering process continues all the time, so over a long time the average value of k is
zero; that is, average is the same as average .
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Figure 3.8

(a} In the absence of a field, over a long time, the average of all k values is zero; there is
no net momentum in any one particular direction.

(b) In the presence of a field in the —x direction, the electron accelerates in the +x direction
increasing its k value along x until it is scattered to a random k value. Over a long time, the
average of all k values is along the +x direction. Thus the electron drifts along +x.

When an electric field is applied in the X direction the electron gains momentum in the ™ X

(eEx) the force of the field. With time, while the electron is not scattered, it

Ky

direction from

moves up in the E-k diagram from tok2+ tok3+ and so on until a lattice vibration



randomly scatters the electron to k- (Fig. 3.8b). Over a long time, the average of all k_ IS o

longer equal to the average of all and there is a net momentum in the ™ X direction, which is
tantamount to a drift in the same direction.
Effective Mass of an Electron

The inertial mass of a particle is defined by mass = force/acceleration. We will evaluate the

E

velocity and acceleration of the electron in the CB in response to an electric field —* along =X

that imposes an external force Fext = €Ex in the direction (Fig. 3.8b).Since we are treating
the electron as a wave, we have to evaluate the group velocity, which, by definition, is

vy =dw/dk

The time dependence of the wave function is SXP (=JEt /) \yhere the energy
E=ho
@ s the an angular frequency associated with the wave motion of the electron. Both E and
depend on k. Thus the group velocity is
1 dE
Vg =+
h dk (3.4)

Thus the group velocity is determined by the gradient of the E-k

Fext =ek

curve. In the presence of an

electric field, the electron experiences a force X from which it gains energy and

moves up in the E-k diagram until, later on, it collides with a lattice vibration (Fig. 3.8b).

. o . . v,0t
During a small time interval Ot petween collisions, the electron moves a distance 9~ and hence

gains energy OE  which is

OF = Fextvg5t (35)

_ L dE _ dk

ext — -
vy dt dt (3.6)

) ) .d dt
The acceleration a is defined Vg / as .



M
dv, k \d,E dk

a= =

dt dt  hdi’ dt (3.7)
From equation (3.7), we can substitute fordk/dt in equation (3.6) to obtain
2
h
Fext =5 7@
d°E
dk?

(3.8)

We know that Fext =ma where m is the electron mass in vacuum. Therefore the effective mass

of the electron in the crystal is

-1
2
m =h2 {d E}

2
dk (39)

The effective mass depends on the E -k

relationship, which in turn depends on the crystal
symmetry and the nature of bonding between the atoms. The value is different for electrons in

the CB and for those in the VB, and moreover, it depends on the energy of the electron since it is

2 2
related to the curvature of the £ ~ k behavior (d"E /dk~) . The effective mass is a quantum

mechanical quantity in as much as the behavior is a direct consequence of the application of the

S.E. to the electron in the crystal. When the E-k

curve is a downward concave as at the top
of a band (Fig. 3.6), the effective mass of an electron at these energies in a band is negative.

When the electron moves up on the E-k

curve by gaining energy from the field, it actually
decelerates, that is, moves very slowly. Its acceleration is therefore in the opposite direction to an

electron at the bottom of the band



Model Questions

1. What is Effective mass of an electron? Differentiate the direct and indirect gap
semiconductors.

2. Explain, motion of an electron in nanocrystaline solid materials?

References

1. S. O. Kasap, Principles of Electronic Materials and Devices, Tata McGraw-Hill (2003).

2. S. L. Kakani& C. Hemarajani, Solid State Physics, Sultan Chand and Sons. (1986).

3. Rakesh kr Singh and A.Yadav, Physics of Nanomaterials, M.Sc course, NOU,
Patna(2017)



